skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jeong, Seokhan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Glyoxal (CHOCHO), the simplest dicarbonyl in thetroposphere, is a potential precursor for secondary organic aerosol (SOA)and brown carbon (BrC) affecting air quality and climate. The airbornemeasurement of CHOCHO concentrations during the KORUS-AQ (KORea–US AirQuality study) campaign in 2016 enables detailed quantification of lossmechanisms pertaining to SOA formation in the real atmosphere. Theproduction of this molecule was mainly from oxidation of aromatics (59 %)initiated by hydroxyl radical (OH). CHOCHO loss to aerosol was found to bethe most important removal path (69 %) and contributed to roughly∼ 20 % (3.7 µg sm−3 ppmv−1 h−1,normalized with excess CO) of SOA growth in the first 6 h in SeoulMetropolitan Area. A reactive uptake coefficient (γ) of∼ 0.008 best represents the loss of CHOCHO by surface uptakeduring the campaign. To our knowledge, we show the first field observationof aerosol surface-area-dependent (Asurf) CHOCHO uptake, which divergesfrom the simple surface uptake assumption as Asurf increases in ambientcondition. Specifically, under the low (high) aerosol loading, the CHOCHOeffective uptake rate coefficient, keff,uptake, linearly increases(levels off) with Asurf; thus, the irreversible surface uptake is areasonable (unreasonable) approximation for simulating CHOCHO loss toaerosol. Dependence on photochemical impact and changes in the chemical andphysical aerosol properties “free water”, as well as aerosol viscosity,are discussed as other possible factors influencing CHOCHO uptake rate. Ourinferred Henry's law coefficient of CHOCHO, 7.0×108 M atm−1, is ∼ 2 orders of magnitude higher than thoseestimated from salting-in effects constrained by inorganic salts onlyconsistent with laboratory findings that show similar high partitioning intowater-soluble organics, which urges more understanding on CHOCHO solubilityunder real atmospheric conditions. 
    more » « less